ROS responsive resveratrol delivery from LDLR peptide conjugated PLA-coated mesoporous silica nanoparticles across the blood–brain barrier
نویسندگان
چکیده
BACKGROUND Oxidative stress acts as a trigger in the course of neurodegenerative diseases and neural injuries. An antioxidant-based therapy can be effective to ameliorate the deleterious effects of oxidative stress. Resveratrol (RSV) has been shown to be effective at removing excess reactive oxygen species (ROS) or reactive nitrogen species generation in the central nervous system (CNS), but the delivery of RSV into the brain through systemic administration is inefficient. Here, we have developed a RSV delivery vehicle based on polylactic acid (PLA)-coated mesoporous silica nanoparticles (MSNPs), conjugated with a ligand peptide of low-density lipoprotein receptor (LDLR) to enhance their transcytosis across the blood-brain barrier (BBB). RESULTS Resveratrol was loaded into MSNPs (average diameter 200 nm, pore size 4 nm) at 16 μg/mg (w/w). As a gatekeeper, the PLA coating prevented the RSV burst release, while ROS was shown to trigger the drug release by accelerating PLA degradation. An in vitro BBB model with a co-culture of rat brain microvascular endothelial cells (RBECs) and microglia cells using Transwell chambers was established to assess the RSV delivery across BBB. The conjugation of LDLR ligand peptides markedly enhanced the migration of MSNPs across the RBECs monolayer. RSV could be released and effectively reduce the activation of the microglia cells stimulated by phorbol-myristate-acetate or lipopolysaccharide. CONCLUSIONS These ROS responsive LDLR peptides conjugated PLA-coated MSNPs have great potential for oxidative stress therapy in CNS.
منابع مشابه
Feasibility Study of the Permeability and Uptake of Mesoporous Silica Nanoparticles across the Blood-Brain Barrier
Drug delivery into the brain is impeded by the blood-brain-barrier (BBB) that filters out the vast majority of drugs after systemic administration. In this work, we assessed the transport, uptake and cytotoxicity of promising drug nanocarriers, mesoporous silica nanoparticles (MSNs), in in vitro models of the BBB. RBE4 rat brain endothelial cells and Madin-Darby canine kidney epithelial cells, ...
متن کاملEnzyme-responsive cell-penetrating peptide conjugated mesoporous silica quantum dot nanocarriers for controlled release of nucleus-targeted drug molecules and real-time intracellular fluorescence imaging of tumor cells.
Here, a set of novel and personalized nanocarriers are presented for controlled nucleus-targeted antitumor drug delivery and real-time imaging of intracellular drug molecule trafficking by integrating an enzyme activatable cell penetrating peptide (CPP) with mesoporous silica coated quantum dots nanoparticles. Upon loading of antitumor drug, doxorubicin (DOX) and further exposure to proteases i...
متن کاملPreparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles.
Amphotericin B (AmB)/poly(lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG) nanoparticles coated with polysorbate 80 (Tween-80) were prepared by nanoprecipitation for transport across the blood-brain barrier (BBB). The effects of Tween-80 on the size and distribution, entrapment efficiency and release behavior of AmB/PLA-b-PEG nanoparticles were investigated. Furthermore, the brain targeting and...
متن کاملEnzyme-responsive multifunctional magnetic nanoparticles for tumor intracellular drug delivery and imaging.
Enzyme-responsive, hybrid, magnetic silica nanoparticles have been employed for multifunctional applications in selective drug delivery and intracellular tumor imaging. In this study, doxorubicin (Dox)-conjugated, enzyme-cleavable peptide precursors were covalently tethered onto the surface of uniform silica-coated magnetic nanoparticles through click chemistry. This enzyme-responsive nanoparti...
متن کاملNIR photoresponsive crosslinked upconverting nanocarriers toward selective intracellular drug release.
An NIR-responsive mesoporous silica coated upconverting nanoparticle (UCNP) conjugate is developed for controllable drug delivery and fluorescence imaging in living cells. In this work, antitumor drug doxorubicin (Dox) molecules are encapsulated within cross-linked photocaged mesoporous silica coated UCNPs. Upon 980 nm light irradiation, Dox could be selectively released through the photocleava...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2018